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ABSTRACT

Spawning salmon deliver nutrients (salmon-
derived nutrients, SDN) to natal watersheds that
can be incorporated into terrestrial and aquatic
food webs, potentially increasing ecosystem pro-
ductivity. Peterson Creek, a coastal watershed in
southeast Alaska that supports several species of
anadromous fish, was sampled over the course of a
storm during September 2006 to test the hypothesis
that stormflows re-introduce stored SDN into the
stream. We used stable isotopes and PARAFAC
modeling of fluorescence excitation-emission
spectroscopy to detect flushing of DOM from sal-
mon carcasses in the riparian zone back into a
spawning stream. During the early storm hydro-
graph, streamwater concentrations of NH,~N and
total dissolved phosphorus (TDP), the fluorescent
protein tyrosine and the §'°N content of DOM

peaked, followed by a rapid decrease during max-
imum stormflow. Although 8'°N has previously
been used to track SDN in riparian zones, the use of
fluorescence spectroscopy provides an independent
indicator that SDN are being returned from the
riparian zone to the stream after a period of inter-
mediate storage outside the stream channel. Our
findings further demonstrate the utility of using
both 8'°N of streamwater DOM and fluorescence
spectroscopy with PARAFAC modeling to monitor
how the pool of streamwater DOM changes in
spawning salmon streams.
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INTRODUCTION

Nutrient transfer from marine to coastal ecosystems
by anadromous salmon (Oncorhynchus spp.) has
received much attention in recent years. Salmon-
derived nutrients (SDN) may enter coastal stream
food webs through bottom up and top down path-
ways (Gende and others 2002). Thus, identifying
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the pathways by which SDN are stored and released
within streams is critical for developing an under-
standing of the ecological role salmon fill within
coastal ecosystems.

SDN can be assimilated into freshwater food
webs either by direct consumption of carcass
material and eggs by invertebrates or fish (Bilby
and others 1996; Wipfli and others 1998; Chaloner
and others 2002) or through uptake of limiting
dissolved nutrients by bacterial communities
(Yoder and others 2006) and epilithon (Mitchell
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and Lamberti 2005). SDN can also be delivered to
riparian ecosystems through hyporheic flowpaths
(O’Keefe and Edwards 2003), as excreta by preda-
tors @nd scavengers (Hilderbrand and others 1999),
through the deposition of partially consumed sal-
mon carcasses by bears (Hilderbrand and others
1999; Gende and others 2001) and by floods, which
can deposit carcasses in streamside vegetation,
woody debris, or on the soil surface (Ben-David
and others 1998). Moreover, the assimilation of
SDN into riparian ecosystems via these pathways
varies over time and among different sites (Hellfield
and Naiman 2006). Once in the riparian zone, SDN
are incorporated into a variety of pools including
soil organic matter, vegetation, microbial biomass,
and roots (Bilby and others 2003; Bartz and
Naiman 2005; Wilkinson and others 2005; Drake
and others 2006). Despite numerous studies con-
firming SDN storage in riparian zones, movement
of SDN back into streams has not previously been
documented.

Stable isotopes (primarily '*N and '°N) have
been used successfully in ecological studies to
quantify the contribution of SDN to freshwater
ecosystems (Kline and others 1993; Bilby and
others 1996), follow the flow of SDN into aquatic
food webs (Bilby and others 1996; Chaloner and
others 2002; Hicks and others 2005}, and docu-
ment the uptake and storage of SDN by riparian
vegetation and soil organic matter pools (Bilby
and others 2003; Drake and others 2006). '°N is a
particularly useful tracer of salmon N because
anadromous salmon acquire most of their bio-
mass in marine ecosystems that are relatively
enriched in '">N compared to riparian soil and
biomass N pools.

In addition, fluorescence spectroscopy excita-
tion—emission matrices (EEMs) have recently been
used to identify streamwater dissolved organic
matter (DOM) derived from spawning salmon
(Hood and others 2007). During spawning, salmon
contribute protein-rich DOM to sireams that has a
unique fluorescent fingerprint which can be used
to detect DOM derived from salmon within the
larger pool of stream DOM. Excitation—emission
matrices can be analyzed with the multivariate
modeling technique, parallel factor analysis
(PARAFAC). PARAFAC is a three-way, decompo-
sition method similar to principal component
analysis that decomposes EEMs into trilinear
components. PARAFAC has been shown to suc-
cessfully decompose the fluorescent signature of
aquatic DOM into individual components, thereby
providing information about the composition and
origin of DOM (Stedmon and others 2003).

In this study, we used stable isotopes and fluo-
rescence spectroscopy to investigate the hydrologic
flushing of SDN stored in the riparian zone back
into a spawning stream. This represents a previ-
ously undocumented pathway for SDN transfer to
aquatic ecosystems and elucidates a potential
mechanism for the storage and delayed release of
DOM and inorganic forms of N and P, which are
typically limiting to primary production in aquatic
ecosystems.

METHODS
Site Description

The study was conducted in the Peterson Creek
watershed in southeast Alaska, approximately
40 km north of Juneau, Alaska. Southeast Alaska
has a moderate maritime climate with mean
monthly temperatures ranging from -2 to 14°C.
Mean annual precipitation is 1400 mm, much of
which falls during large frontal storms in the fall.
The Peterson Creek watershed is approximately
25 km? and 53% of the watershed area is covered
with wetlands, making Peterson Creek a brown-
water stream where DOC concentrations typically
range from 5 to 13 mg C 1! (Hood and others
2007). Annual discharge in the creek ranges from
0.1 m®>s™" to more than 8.0 m>s™'. The Peterson
Creek watershed consists of a landscape mosaic of
water-logged peatlands mixed with coniferous
forest (predominantly Picea sitchensis and Tsuga
heterophylla). The creek supports anadromous pink
(Oncorhynchus gorbuscha), chum (0. keta), and coho
salmon (0. kisutch), with peak spawner densities
occurring from mid-July - through mid-August.
Spawner densities can be as high as 0.53 fish m™
in the active stream channel (Mitchell and
Lamberti 2005).

Field and Laboratory Methods

Surface water was sampled with an ISCO (model
3700) automated sampler over the course of a
storm lasting from September 6-8, 2006. Spawning
in Peterson Creek began in mid-July, peaked in
early August, and the last live spawners were
observed in mid-August. One-liter streamwater
samples were collected every 2 h on the ascending
limb of the hydrograph and every 4-8 h on the
descending limb. Water samples were removed
from the ISCO daily, filtered through pre-com-
busted, Gelman A/E, glass fiber filters (0.7 um),
and refrigerated until analysis. Dissolved nutrients
were analyzed within 48 h of collection and fluo-
rescence measurements were completed within
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one week of collection. To estimate salmon carcass
densities in the riparian zone before the storm, the
number of carcasses was visually counted along
‘three, 10 m transects that extended 2 m from the
active stream channel. Our approach provided a
rough estimate of salmon carcass densities before
the storm. Observed salmon carcass density in the
riparian zone ranged from 0 to 5 fish m™ with an
average of 0.45 fish m™2.

DOC concentrations were determined by high-
temperature combustion using a Shimadzu TOC-V
Organic Carbon Analyzer and the standard devia-
tion of standards during analysis was +0.3 mg C 17,
Total dissolved phosphorus (TDP) was measured
using a persulfate digestion (Valderrama 1981) in
conjunction with the ascorbic acid method (Murphy
and Riley 1962). A 10-cm, quartz flow through cell
was used for TDP analysis to enable the detection of
low P concentrations (0.5-1.0 pg P1™"). Ammonium

(NH4,~N) was measured on a Dionex Ion: Chro-.

matograph (ICS-1500) with a detection limit of 5 ug
N I'. The standard deviation of standards re-ana-
lyzed during sample analyses was +0.59 pg N1™' for
NH,~N and +0.14 pg P 1™ for TDP.

Fluorescence of DOM was measured on a Flu-
oromax-3 (Jobin Yvon Horiba) fluorometer with a
xenon lamp, following the procedures of Hood and
others  (2007). Excitation—emission matrices
(EEMs) were created by measuring fluorescence
intensity across excitation wavelengths ranging
from 240 to 450 nm and emission wavelengths
ranging from 300 to 600 nm. Water samples were
diluted according to Green and Blough (1994) to
avoid inner filter effects. EEMs were corrected for
instrument bias and subsequently Raman normal-
ized using the area under the water Raman peak at
excitation wavelength 350 nm. PARAFAC model-
ing of fluorescence EEMs was conducted with
MATLAB using the PLS_toolbox version 3.7 fol-
lowing the procedures described in Stedmon and
others (2003). A non-negativity constraint was
applied to the PARAFAC model and the model was
successfully validated using a split-plot analysis and
core consistency diagnostics (Stedmon and others
2003). I the correct number of fluorescent com-
ponents is selected using the PARAFAC model, the
components can be compared by determining the
relative proportion of each component to the total
DOM fluorescence. The relative proportion of each
fluorescent component was determined for the
individual streamwater samples during the storm
by quantifying the relative abundance of each
component in comparison to the other components
identified by the PARAFAC model.

Streamwater DOM from filtered water samples
was lyophilized using a Labconco freeze drier
(FreezeZone 2.5) at —=50°C and was stored in a
desiccator until isotope analysis. Analyses for 8'°N
of DOM were performed at the UC Davis Stable
Isotope Facility by continuous-flow Isotope Ratio
Mass Spectrometry (IRMS). Instrument precision
as measured by the standard deviation of standards
during the run was £0.12%, for §'°N.

RESULTS

Inorganic Nutrient Concentrations
and 6'°N of Streamwater DOM

During September 6-8, 4.8 cm of precipitation fell
in the Peterson Creek watershed. Stream discharge
in Peterson Creek increased from 0.6 to 4.8 m>s™"
in 22 h and receded to pre-storm levels approxi-
mately 72 h after the beginning of the storm.
During the early portion of the storm hydrograph,
TDP concentrations increased approximately 40%
to a maximum of 31 pg P I"! and NH,~N concen-
trations increased 30% to a maximum of 51 pg NI7!
(Figure 1A). As streamflow increased, both TDP and
NH,—N concentrations decreased to below 10 pg 1~
and stayed below 15 pg1™' for the remainder of the
storm.

Concentrations of streamwater DOC increased
sharply on the ascending limb of the hydrograph,
peaked at approximately 15mg C 17!, and
decreased back toward pre-storm levels on the
descending limb of the hydrograph (Figure 1B).
The 8'°N values for streamwater DOM ranged from
0.45 t0 9.9%, and peaked coincident with the peaks
in inorganic N and P on the early portion of the
storm hydrograph (Figure 1C). This peak was fol-
lowed by a rapid decrease in 8'°N of DOM as
stream discharge increased.

Fluorescence Spectroscopy

We employed a PARAFAC model to evaluate the
fluorescence properties of streamwater DOM. Using
this model, we identified seven unique compo-
nents within the fluorescence EEMs. Of the seven
components identified by the PARAFAC model, we
focus our analysis on the fluorescent component
linked to the protein tyrosine, which has an exci-
tation maximum of 275 nm and an emission
maximum of 306-308 nm. We refer to tyrosine
fluorescence in this study as “tyrosine-like”
because this fluorophore is likely a mixiure of
proteinaceous materials rather than free tyrosine
(Maie and others 2007). Tyrosine-like fluorescence
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has been observed in other studies (Hood and
others 2007; Maie and others 2007) and was vali-
dated in our study using a pure tyrosine standard.
We use tyrosine-like fluorescence for our analyéis
because salmon-derived DOM has been shown to
be rich in tyrosine-like fluorescence while lacking
the characteristic humic-like fluorescence typical of
DOM leached from peatland soils (Hood and others
2007).

The relative contribution of tyrosine-like fluo-
rescence increased rapidly from 1.1 to 6.6% ecarly
in the storm hydrograph followed by a rapid
decrease during peak stormflow (Figure 1C). This
protein-like fluorescence is evident in the fluores-
cence EEMs. Before the onset of the storm, the

primary fluorescence peak, which has been attrib-
uted to humic-like material of terrestrial origin
(Stedmon and others 2003), occurs at approxi-
mately 240 nm excitation and 452 nm emission
(Figure 2). However, in the early storm hydro-
graph, there is an increase in protein fluorescence
with the appearance of the tyrosine-like peak cor-
responding to an excitation of 275 nm and an
emission maximum of 306-308 nm (Figure 2). The
large initial increase in tyrosine-like fluorescence
was similar in timing to the increases in 8'°N of
DOM and inorganic nutrient concentrations. There
was a second, smaller peak in tyrosine-like fluo-
rescence on the descending limb of the hydrograph
with a maximum percent contribution of 2.8%.
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Figure 2. EEMs for DOM from Peterson Creek streamwater (1) before the September 6-8 storm and (2) during the pulse
of SDN when the tyrosine-like fluorescence was elevated. Tyrosine-like fluorescence has an excitation maximum of
275 nm and an emission maximum of 306-308 nm, whereas the terrestrial-derived, humic-like material has an excitation
maximum of 240 nm and an emission maximum of 452 nm. Fluorescence intensities are in Raman units.

Discussion

Increases in streamwater concentrations of inor-
ganic N and P (primarily NH," and SRP) during
salmon spawning have been reported in numerous
studies (Minakawa and Gara 1999; Mitchell and
Lamberti 2005, Hood and others 2007). These
aquatic nutrient pulses are associated with the
presence of both spawning salmon and salmon
carcasses within the stream channel. At the end of
the spawning period, carcasses are typically flushed
from the stream channel during high flow events
and streamwater nutrient concentrations decrease
to pre-spawning levels. Our results suggest that
salmon-derived inorganic nutrients flushed from
carcasses that are close to but out of the stream
channel can elevate streamwater concentrations of
inorganic N and P.

Several studies have documented increases in
streamwater concentrations of DOM during salmon
spawning (Sarica and others 2004; Hood and others
2007); however, few studies have characterized
DOM derived from salmon. Adult salmon tissue
and eggs have 3'°N values of 12-15%, (Kline and
others 1993; Hicks and others 2005). The enriched
DOM &'°N values reported here are consistent with
these values and indicate that salmon carcasses
contribute to the streamwater DOM pool during
the storm. Fluorescence characterization of
streamwater DOM supports this hypothesis,
because the tyrosine-like protein peaks observed
early during the storm are identical to the tyrosine-
like protein peaks identified previously during the
spawning period (Hood and others 2007). More-

over, the relative contribution of the tyrosine
(6.6%) and humic-like fluorescent (24.1%) com-
ponents observed during the SDN pulse early in the
storm was in between spawning (tyrosine: 15-
35%; humic: 5-15%) and non-spawning levels
(tyrosine: 1-3%; humic: 30-35%) typically ob-
served in Peterson Creek (Hood and others 2007).
As a result of the distinct chemical differences be-
tween salmon and terrestrially-derived DOM
(which dominates the aquatic DOM load in Peter-
son Creek throughout most of the year), salmon-
derived DOM can be easily fingerprinted using
fluorescence spectroscopy. Taken together, these
independent characterization techniques suggest:
that organic SDN stored outside the active stream
channel returned to the stream early in the storm.
Our findings further demonstrate the utility of both
3'°N of streamwater DOM and fluorescence spec-
troscopy with PARAFAC modeling to monitor how
the pool of streamwater DOM changes in spawning
salmon streams. B

In forested watersheds without spawning
salmon, most streamwater DOM 1is derived from
allochthonous sources within the watershed,
particularly DOM mobilized from soil organic
matter pools during high streamflow events, such
as snowmelt (Boyer and others 1997) and storms
(Hinton and others 1998; McGlynn and McDonnell
2003). In many forested watersheds, DOC con-
centrations peak on the ascending limb of the
storm hydrograph because of early, DOC-rich
contributions from riparian areas that are later
diluted by low DOC hillslope water (Hinton and
others 1998; McGlynn and McDonnell 2003). Our
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results depict an early increase in DOC with a high
protein and >N content, consistent with salmon
DOM being flushed from a near-stream reservoir
-early on the storm hydrograph. The pulses of TDP
and NH,-N that occur coincident with the delivery
of salmon DOM further corroborate this finding.
The continued increase in DOM during the storm
has fluorescent properties and '°N values which are
consistent with inputs from the extensive wetlands
within the Peterson Creek watershed.

The SDN puise early in the storm suggests the
riparian zone is most likely the near-stream area for
SDN storage. In our study stream, previous storm
deposition of salmon carcasses in the riparian zone
resulted in localized carcass densities as high as
5 fish m™. The Peterson Creek watershed is similar
to many other anadromous salmon streams in
southeast Alaska where the highest carcass densi-
ties are typically found on large woody debris
(LWD) in the riparian zone and along the high-
water mark from previous storms (Figure 3). Sal-
mon carcasses stored in the riparian zone could
leach DOM and inorganic nutrients back into the
stream channel through several pathways. Precip-
itation could fall on salmon carcasses lodged in
LWD and contribute SDN directly to the stream.
SDN could be leached from carcasses lying on the
soil and transported to the stream through overland
flow, shallow-soil flowpaths, or movement into
underlying hyporheic flowpaths. As salmon car-
casses decompose, SDN could be incorporated into
soil organic matter pools (Reimchen and others

Figure 3. Salmon carcasses deposited on large woody
debris, southeast Alaska.

2002; Drake and others 2006) where they could be
leached by rainwater percolating through the soil
and rapidly transported to the stream.

A portion of the observed pulse of SDN could be
from return flow from hyporheic zones within the
active channel and beneath the floodplain. O’Keefe
and Edwards (2003) found elevated concentrations
of NH,* and SRP in the hyporheic zone when
spawning salmon were present and postulated that
if SDN enters the biologically active, upstream edge
of the hyporheic zone, there is the potential for
biological uptake and storage of SDN. This form of
SDN spiraling through the hyporheic zone could
allow for the delayed release of nutrients through
mineralization and subsequent release to the active
stream channel as return flow.

Our findings have important implications for
watersheds containing anadromous fish streams.
First, salmon carcass storage in the riparian zone is
a potential source of nutrients for aguatic ecosys-
tems. For example, Gende and others (2007) found
maximum soil inorganic N loadings of 6-7 g N m™
from salmon carcasses deposited in the riparian
zone. In our study, using the inorganic N loading
rate by Gende and others (2007), average riparian
salmon carcass density in Peterson Creek
(0.45 fish m™2), and a time period of 2 weeks
(estimated length of time salmon carcasses were in
the riparian zone before the storm), we estimate
that approximately 2 g N m™ (6% of total N in
riparian salmon carcasses) was available to flush
from salmon carcasses in the riparian zone to Pet-
erson Creek during the storm. Second, evidence
continues to accumulate that SDN inputs are
assimilated into aquatic food webs and can have
important effects on natal streams, comprising as
much as 50% of juvenile coho salmon diets in
Alaskan streams (Hicks and others 2005). However,
for SDN to have a substantial impact on annual
stream production, nutrients must influence an-
nual production and not simply stimulate short-
term processes. Most large salmon runs occur near
or at the end of the growth season for aquatic
producers and riparian vegetation in southeast
Alaska. These salmon runs often occur during or
just prior to scouring late summer floods that
remove most salmon carcasses from the stream
channel. To impact annual stream production, SDN
must be retained within the ecosystem and
returned to the stream after a period of storage that
can last weeks to potentially as long as the
following spring. Riparian and/or hyporheic zones
are likely areas for this to occur, and even though
our proposed mechanism for storage and return of
SDN to streams may not significantly increase
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annual stream production, our study is the first to
document the return of SDN to the stream after a
period of intermediate storage outside the stream
channel.

Riparian zones have long been recognized for
influencing channel morphology and increasing
stream habitat complexity by contributing LWD to
streams (Bilby and others 1991). These direct effects
have been shown to improve juvenile coho salmon
survival (Quinn and Peterson 1996), create habitat
for over-wintering juvenile coho salmon (Bustard
and Narver 1975), and reduce stream velocity
which in turn attracts spawning salmon (Shirvell
1990). Our findings suggest that riparian zones may
provide storage for salmon carcasses and facilitate
the delayed release of organic and inorganic SDN
back into the active stream channel. As a result, we
postulate that habitat complexity modulates the
feedbacks between salmon inputs and coastal eco-
systems and thus, watershed restoration strategies
should consider the intricacies of this linkage.
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